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A bubble translating through a continuous liquid (i.e. Newtonian) phase moves
as a sphere when inertial and viscous forces are small relative to capillary forces.
Spherical bubbles with stress-free interfaces do not retain wakes at their trailing
ends as inertial forces become important (increasing Reynolds number). This is in
contrast to translating spheres with immobile interfaces in which flow separation
and wake formation occurs at order-one Reynolds number. Surfactants present
in the continuous phase adsorb onto a bubble surface as it translates, and affect
the interfacial mobility by creating tension gradient forces. Adsorbed surfactant is
convected to the trailing end of the bubble, lowers the tension there relative to
the front, and creates a tension gradient which reduces the surface flow. For low
bulk concentrations of surfactant (or if kinetic exchange between bulk and surface
is slow relative to convection), diffusion towards the surface is much slower than
convection, and surfactant is swept into an immobile cap at the trailing end. As with
solid spheres, these caps entrain wakes at order-one Reynolds number. In adsorptive
bubble technologies where solutes transfer between the bubble and the continuous
phase, usually through thin boundary layers around the bubble surface (high Péclet
number), these wakes generally form owing to the presence of surfactant impurities.
The wake presence retards the interphase transfer displacing the thin boundary layer
towards the front end of the bubble; as mass transfer through the wake is much
slower than through the boundary layer, the mass transfer is reduced.

Our recent theoretical research has demonstrated that at low Reynolds numbers, the
mobility of a surfactant-retarded bubble interface can be increased by raising the bulk
concentration of a surfactant which kinetically rapidly exchanges between the surface
and the bulk. At high bulk concentrations the interface saturates with surfactant,
effectively removing the tension gradient. In this paper, we demonstrate theoretically
that this interfacial control is still realized at order-one Reynolds numbers, and, more
importantly, we show that the control can be used to manipulate the formation,
size and ultimately the disappearance of a wake. This wake removal mechanism has
the potential to dramatically increase the interphase transfer in adsorptive bubble
technologies.
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1. Introduction
When a gas bubble of radius a, having a clean interface moves with steady velocity

U through a continuous liquid phase of density ρ and viscosity µ, by the action of a
driving force, the steady flow field, in the absence of inertia, is given by the Hadamard–
Rybczynski solution (see Edwards, Brenner & Wasan 1991). For this external creeping
flow, the spherical shape is an exact solution that does not have closed streamlines
in the region exterior to the bubble, and in particular no wakes at the back end.
At finite Reynolds numbers (Re = ρUa/µ), inertia can distort the spherical shape
and can change the flow field significantly. When inertial forces are small relative to
surface tension forces (i.e. the Weber number We = ρaU2/γ is small where γ is the
surface tension coefficient), Moore (1959) has shown that the bubble remains almost
spherical for both small and large Reynolds numbers. (See also Moore (1963, 1965)
for drag calculations using boundary-layer theory.) Numerical work by Ryskin &
Leal (1984) confirms this finding and more importantly shows that the streamlines
remain open for Reynolds numbers less than 125 (which was the largest Reynolds
number studied); a similar conclusion was obtained by Blanco & Magnaudet (1995)
for a wider range of Reynolds numbers less than 500. As We increases, inertia
distorts the drop from nearly spherical to oblate-ellipsoidal and spherical cap shapes.
At these higher Weber numbers, where the distortion is significant, flow separation
and wake formation occur at the back end if the Reynolds number is sufficiently
large. In the case where the bubble remains spherical, the absence of a wake at all
Reynolds numbers contrasts to the case of a solid sphere where flow separation and
wake formation occur at Reynolds numbers larger than about 12 (see Clift, Grace &
Weber 1978; Johnson & Patel 1999).

The fact that solid spheres develop wakes at relatively small Reynolds numbers
whereas clean spherical bubbles do not (at any Re), suggests that a reduction in
a spherical bubble’s interfacial mobility can cause a wake to form at its back end.
Moreover, if the interfacial mobility can be controlled, the appearance as well as the
size of the wake can also be controlled. Such a control can enhance interphase mass
transfer in processes where bubbles are forced to rise through a continuous phase in
order to extract undesirable components of the gas phase into the liquid (see Huang
& Kintner 1969; Beitel & Heideger 1971).

As is well recognized, surfactants adsorbing from the continuous phase onto the
bubble interface cause a reduction in interfacial mobility. This reduction arises from
the Marangoni forces which develop from the convective partitioning of surfactant
as described by Frumkin & Levich (1947), Levich (1962) and Edwards et al. (1991).
Surfactant adsorbed on the bubble surface is convected by the surface flow from the
front to the trailing end. The surface concentration increases causing kinetic desorp-
tion into the rear sublayer. This desorption locally raises the sublayer concentration
Cs, at the back above the bulk value C∞, far from the interface. The difference
drives a diffusive flux away from the trailing end. Similarly at the front end, the
reduction in surface concentration causes kinetic adsorption from the front sublayer
onto the front of the bubble. The front sublayer concentration decreases, creating a
diffusive flux from the bulk to the front end. Eventually, a steady state develops in
which all these fluxes balance. The surface concentration at the trailing end is higher
than that at the front, and the interfacial tension γ is lower at the back relative to
the front. This interfacial tension difference creates a Marangoni stress along the
surface which forces the front part of the surface to tug at the rear, reducing the
interfacial mobility and, at steady state, increasing the drag for a given terminal
velocity U.
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The way the surfactant-induced retardation can give rise to wake formation on a
spherical bubble, was first shown by Bel Fdhila & Duineveld (1996) and McLaughlin
(1997). Both these studies examined the case in which the exchange of surfactant
between the bulk and the surface is much lower than the rate at which surfactant is
convected to the back end of the bubble. Scales for the surfactant transport regimes
can be constructed as follows. To scale the kinetic rate we use Langmuir kinetics,

βCs(Γ∞ − Γ )− αΓ = j, (1.1)

where α and β are the desorption and adsorption rate constants, respectively, j is
the kinetic flux, Γ is the surface concentration and Γ∞ is the maximum packing
concentration. For large bulk concentrations, the convective rate is of order Γ∞Ua,
where U is the terminal velocity and a the particle radius. As the diffusive rate per unit
area is of order DC∞/a (note that this assumes the diffusion boundary-layer thickness
to be of the order of the bubble radius: if the bulk Péclet number Pe – defined below
– is large, then the diffusive boundary-layer thickness is of order aPe−1/2 for a clean
interface and the diffusive rate per unit area is now of order DC∞/aPe−1/2), where
D is the bulk diffusion coefficient, the ratio of diffusive to convective rates can be
written as χk/Pe, where k = βC∞/α, χ = αa/βΓ∞ and Pe is the Péclet number defined
as Pe = Ua/D. The ratio of kinetic desorption to surface convection is the Biot
number, Bi = αa/U. In the insoluble limit, we have χk/Pe� 1 or Bi� 1. Surfactant,
therefore, collects at the back end in a stagnant cap while the front end is swept clean
of surfactant and is stress-free. In the studies of Bel Fdhila & Duineveld (1996) and
McLaughlin (1997) the stagnant cap arose because of the kinetic limitation Bi � 1
with bulk diffusion rapid, χk/Pe� 1. (This regime was also studied at low Reynolds
number by Savic 1953; Griffith 1962; Harper 1973 (for small cap angles); and Davis
& Acrivos 1966; Holbrook & Levan 1983a; Sadhal & Johnson 1983; He, Maldarelli
& Dagan 1991; and Kim & Subramanian 1989a.) The order-one Reynolds number
studies demonstrated that at sufficiently large Re and cap angles, the immobility of
the cap causes a recirculation at the back. In a more complete study in which the
stagnant cap arose from slow rates of bulk diffusion and kinetic exchange, Cuenot,
Magnaudet & Spennato (1997) showed again the formation of a wake for a spherical
bubble at sufficiently high Reynolds number.

These studies illustrate how surfactant can act to form wakes at order-one Re.
This stagnant cap regime most commonly arises when surfactant is present at low
concentration as an impurity for which the mass transfer limitation gives rise to the cap
(i.e. kχ/Pe� 1); note that in addition Pe is usually large. The purpose of this study is
to examine how surfactants can be used to manipulate the size of the wakes and even
cause them to disappear completely. Consider the case in which the kinetic rate is fast
relative to convection (Bi � 1) so that the surface and sublayer are in equilibrium.
Bulk diffusion then governs the surfactant transport as given by the magnitude of
the parameter χk/Pe. As this parameter increases to order-one values, diffusive mass
transfer becomes of the same order as surface convection and the stagnant cap
regime disappears with surfactant spread over the entire bubble surface. In this case,
the surface becomes more uniformly retarded rather than completely mobile at the
front and solid-like at the back. For low Re, this regime has been studied by several
authors for the case k < 1. (See Deryagin, Dukhin & Lisichenko 1959; Saville 1973;
Levich 1962; Harper 1974; Harper 1982; Levan & Newman 1976; Holbrook & Levan
1983b; Chen & Stebe (1996, 1997) for a spherical particle.) As expected, no wakes
were observed and the decrease in surface mobility led to an increase in drag. At
order-one Reynolds number and kχ/Pe = O(1), the expected reduced mobility of the
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interface could in principle retain the wake created in the stagnant cap regime. This
circumstance has not been studied. If in addition the parameter kχ/Pe becomes large,
bulk exchange is much larger than surface convection. This regime was studied for
the first time by us at low Re (Wang, Papageorgiou & Maldarelli 1999). It was shown
that in this limit the interface is saturated with surfactant leading to a uniform surface
concentration, reduction in Marangoni stresses and a return to a tangentially stress-
free interface. This remobilization result implies that at order-one Re and kχ/Pe� 1,
the wake can be removed. Experimentally, the easiest way to set this parameter is
to vary the bulk concentration. Thus, at small k, the stagnant cap appears and can
cause wake formation. As k increases, the reduced mobility of the surface maintains
the wake and finally, at large k, the wake disappears.

The aim of this article is to verify by numerical computations the wake-controlling
mechanism surmised above. The model problem and numerical methods are described
in § 2. In § 3, we present numerical results of the surface concentration, surface velocity,
drag on the bubble and wake structure. In § 4, we make some conclusions and discuss
applications to enhancing mass transfer in dispersed phase mass transfer systems. We
also give some realistic physical situations where remobilization can be achieved.

2. Mathematical model and numerical methods
Consider a bubble rising through a Newtonian incompressible fluid in an un-

bounded domain, owing to the action of buoyancy (thermocapillary migration in zero
gravity environments is a related problem). The fluid phase contains surfactants, and
the dimensionless concentration at any point in space and at time t is denoted by
C(x, t). The flow around the bubble is governed by the Navier–Stokes equations and
the surfactant concentration satisfies a convection–diffusion equation which couples
the hydrodynamics with the transport of surfactant. In addition to the conditions of
uniform flow and surfactant concentration at infinity, a set of boundary conditions
must be satisfied at the bubble surface (see later). In the present study, we assume
that the bubble remains spherical (see § 1) and axisymmetric solutions are sought.
We consider a spherical coordinate system, x = (r, θ, φ), fixed to the bubble (and
centred at the bubble origin), with θ = 0 representing the upstream direction. The
corresponding velocity field is defined by u = (ur, uθ, uφ). The equations that follow
result after the non-dimensionalization discussed in § 1.

Owing to axisymmetry (the solution is independent of the azimuthal angle φ), the
velocity field can be represented in terms of the Stokes streamfunction ψ as follows:

ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
. (2.1)

The corresponding vorticity field is of the form (0, 0, ω) where

ω =
1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
=

1

r
E2ψ, (2.2)

where the operator E2 is given by

E2 ≡ 1

sin θ

∂2

∂r2
+

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.3)

The system of equations to be solved, then, becomes

∂ω

∂t
+
∂

∂r
(rurω) +

∂

∂θ
(uθω) =

1

Re
E2(rω sin θ), (2.4)
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ω =
1

r
E2ψ, (2.5)

∂C

∂t
+ u · ∇C =

1

Pe
∇2C. (2.6)

The dimensionless groups appearing in the field equations are the Reynolds number
(Re) and the Péclet number (Pe), as defined in § 1.

At this stage, equations (2.4)–(2.6) for the flow and the surfactant concentration
are not coupled. Coupling occurs through the boundary conditions on the bubble
surface, r = 1. The full set of boundary conditions for the hydrodynamics is most
conveniently written as

ψ = 0 at θ = 0, π, (2.7)

ψ = 0 at r = 1, (2.8)

ψ = 1
2
r2 sin2 θ as r →∞, (2.9)

ω = 0 at θ = 0, π, (2.10)

ω = 0 as r →∞, (2.11)

and

ω =
2

sin θ

∂ψ

∂r

∣∣∣∣
r=1

+
Ma

1− Γ
∂Γ

∂θ
, (2.12)

where Ma = RTΓ∞/µU is the Marangoni number, and Γ is the dimensionless surface
concentration to be found from the concentration field. The boundary condition (2.12)
is a statement of tangential stress balance on the bubble surface and use has been
made of the Langmuir equation of state which in dimensional form reads

γ = γc + RTΓ∞ ln(1− Γ ), (2.13)

with R, T and γc being the gas constant, temperature and clean value of the surface
tension, respectively. The Marangoni stress due to surface tension variations on the
bubble surface, appears on the right-hand side and its origin is discussed in § 1.

The dimensionless boundary conditions for the surfactant transport equation (2.6)
are

∂C

∂θ
= 0 at θ = 0, π, (2.14)

C = 1 as r →∞. (2.15)

The boundary condition (2.14) reflects the symmetry and a second condition is
required at r = 1, which together with the value (2.15) at infinity enables determination
of solutions of (2.6). This condition comes from a mass balance of surfactant on the
bubble surface, and reads

∂Γ

∂t
+

1

sin θ

∂

∂θ
(uθΓ sin θ) =

χk

Pe

∂C

∂r

∣∣∣∣
r=1

, (2.16)

and relates the surface concentration to the mass flux onto the surface. We note that
in (2.16) we have neglected the effects of surface diffusion. For the relatively high
values of Pe used in our simulations, the effect of surface diffusion will be negligible
in the surface mass transfer. Finally, the equilibrium equation between the surface
concentration Γ and the sublayer concentration, provides a nonlinear C–Γ relation
on the surface which closes the system; the kinetic exchange relative to surface
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convection is very large so that the surface and sublayer are in equilibrium, and it
follows from (1.1) that

Γ =
kC

1 + kC

∣∣∣∣
r=1

. (2.17)

In equations (2.16) and (2.17), the parameters appearing are given by χ = αa/βΓ∞
and k = βC∞/α which is a measure of the bulk concentration (see § 1). By substituting
the expression (2.17) into the tangential stress balance condition (2.12), the apparent
singularity in the latter for Γ = 1, is seen to be removed.

Owing to the axial symmetry of the flow considered here, the total force acting on
the bubble must be in the direction of the axis of revolution, and follows from the
total force (we begin using dimensional variables)

F =

∫
T̃ · n dS, (2.18)

where T̃ = −p̃I + µ(∇ũ + ∇ũT ) is the stress tensor and tildes denote dimensional
quantities.

The cumulative effect of the stresses acting over the entire surface of the bubble
give rise to a force Fz , say, acting parallel to the axis of revolution where the positive
direction is taken to be upstream. It is found from (2.18), then, that

Fz =

∫ π

0

{(
−p̃+ 2µ

∂ũr

∂r̃

)
cos θ − µ

[
r̃
∂

∂r̃

(
ũθ

r̃

)
+

1

r̃

∂ũr

∂θ

]
sin θ

}∣∣∣∣
r̃=a

2πa2 sin θ dθ

= 2πa2

∫ π

0

(
sin2 θ

2

∂p̃

∂θ
− µ

a

∂2ψ̃

∂r̃2
sin θ

)∣∣∣∣
r̃=a

dθ

= πa2

∫ π

0

sin2 θ
∂p̃

∂θ
dθ − 2πaµ

∫ π

0

∂2ψ̃

∂r̃2
sin θ dθ

= πa2

∫ π

0

sin2 θ
∂p̃

∂θ
dθ − 2πaµ

∫ π

0

(
2

a

∂ψ̃

∂r̃
+

sin θ

µ

RTΓ∞
Γ∞ − Γ̃

∂Γ̃

∂θ

)
sin θ dθ, (2.19)

where tildes denote dimensional quantities as before.
Making the expression (2.19) dimensionless using inertial scales, yields the drag

coefficient, CD say, experienced by the bubble (it is understood that dependent
variables are evaluated at r = 1 in the integrals below):

CD =
Fz

πa2ρU2

=

∫ π

0

sin2 θ
∂p

∂θ
dθ − 2

Re

∫ π

0

(
2
∂ψ

∂r
+
Ma sin θ

1− Γ
∂Γ

∂θ

)
sin θ dθ. (2.20)

The numerical methods used are similar to those described in Wang et al. (1999).
Briefly, steady-state solutions are obtained by integrating the pseudo-unsteady version
of the hydrodynamic equations – this amounts to including a ∂ψ/∂t term on the left-
hand side of (2.5) and integrating the resulting system of parabolic equations forward
in time until a steady state is reached (see for example Peyret & Taylor 1983). The
time integrations are carried out by using an ADI method which alternates between
the r- and θ-directions. For more details, the reader is referred to Wang et al. (1999)
and Wang (1999).

In the related zero-Reynolds-number problem, the boundary condition for the
hydrodynamic problem at infinity can be treated very efficiently by obtaining a
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correction to the uniform flow value; the correction depends on the value of the
drag on the bubble given by the current iterate, and so imposition of the corrected
boundary condition at a finite radial value yields improved accuracy (for details of this
see Wang et al. 1999). At finite Reynolds numbers, this strategy is no longer tractable
analytically and we proceed by applying the boundary condition (2.9) directly at
r = r∞, where r∞ is sufficiently large and whose value must be checked for accuracy.
For example, we performed runs having r∞ = 30 and Re = 50 and compared the drag
coefficient (non-dimensionalized by the inertial scale πa2ρU2) with that obtained from
a run having r∞ = 20, and found that the former gives a value which is about 1.5%
higher. Runs were also performed on refined grids and we found that the difference
between results computed on 50 × 50 grids with those on 100 × 100, are less than
2%. In addition, the numerical calculations were checked by determining the drag
coefficient without surfactant and the results for Re = 50 and our 50 × 50 grid and
r∞ = 20 were within 5% of the numerical calculations of Ryskin & Leal (1984) who
found a value of 0.19 and Magnaudet, Rivero & Fabre (1995) who found 0.1845.
It is also interesting to compare these results with high-Reynolds-number theories.
At Re = 50, then, the numerical calculations for clean bubbles are lower than the
expression Cd = 12/Re given by Levich (1962) (p. 445), but more accurately given

by the corrected expression Cd = (12/Re)(1− (2.21/
√

2Re)) = 0.187 given by Moore
(1963).

3. Results
In what follows, we present results from extensive simulations that support our

main findings on wake formation and control. We consider results from a computation
which varies the surfactant concentration k and the Reynolds number Re, while the
Marangoni number, the kinetic parameter χ and the Péclet number, are held fixed
at values Ma = 5, χ = 1 and Pe = 100 and 200. We begin by first illustrating
the remobilization of the bubble interface at increasing bulk concentration and at
order-one Reynolds numbers. In § 3.1, we show that as the bulk concentration at
first increases from zero, surfactant convects and accumulates at the back end. With
further increase in bulk concentration, the surface concentration becomes uniform.
The surface velocity distributions are given in § 3.2 where we show that as the surface
concentration becomes uniform and the Marangoni force disappears, the surface
velocity increases towards the clean interface value. In § 3.3, we present results for the
drag which show that the reduction in the Marangoni force leads to a reduction in
the drag. The effect of the remobilization on the wake formed at the back end is given
in § 3.4. In particular, we show that as the bulk concentration increases from zero the
Marangoni forces create a significant reduction in interfacial velocity which causes
wake formation. Further increase in concentration and the accompanying reduction
in Marangoni force (as illustrated in § 3.1–3.3) leads to the disappearance of the wake
– these results are illustrated by streamline plots.

3.1. Surface concentration distributions

As the bubble moves through the fluid (and a steady state has been reached),
surfactant adsorbs onto the surface at the leading edge, is convected to the trailing
edge by the surface flow and diffuses into the bulk off the surface. This activity sets
up a surfactant gradient on the bubble surface since the concentration is higher at the
trailing edge. Numerical solutions depicting typical surface concentration variations
with increasing bulk concentration are given in figure 1. The Reynolds number is
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Figure 1. The surface concentration distribution, for Re = 50, Ma = 5 and χ = 1, and k = βC∞/α
is the measurement of bulk concentration. (a) Pe = 100; (b) 200.

Re = 50 and two sets of results are shown for Péclet numbers Pe = 100 and 200;
each set of results is obtained for the values k = 5, 8, 15 and 200. It can be seen
from the figure that the surface concentration is larger in the vicinity of the trailing
edge for any value of k. In addition, when the bulk concentration is relatively small
(e.g. k = 5), the surface concentration near the front stagnation point is relatively
small and has an almost uniform distribution there, while a relatively sharp gradient
develops near the rear stagnation point to bring the surface concentration to a much
higher and almost uniform value. Such a distribution is typical of the so-called
stagnant cap regime which emerges when convection of surfactant on the surface is
much larger than diffusion off the surface and into the bulk; the regime is described
by the ratio χk/Pe being small, as can be surmised from the boundary condition
(2.16). The relatively strong surface convection, then, quickly sweeps surfactant to
the back end where it accumulates and makes the interface act like a rigid boundary
there.

As k increases, the amount of surfactant adsorbed onto the surface increases, as
seen from the equilibrium relation (2.17). More importantly, however, the surface
concentration gradient decreases with k, and by the time k is increased to 200 the
surface concentration gradient is seen to almost disappear and the bubble surface
is remobilized. This phenomenon can again be explained by the relative magnitude
of the parameter χk/Pe, which increases as k increases implying that diffusion off
the surface and into the bulk at the back end balances surface convection in this
limit.

Comparing the surface concentration distributions for Pe = 100 and 200, we
observe that the larger the Péclet number, the larger the bulk concentration required
to remobilize the interface. Another interesting feature to notice is the slight decrease
in value of the surface concentration near the rear stagnation point; this is caused
by a negative surface velocity at the back end and is discussed in detail in the next
section.

3.2. Surface velocity distributions

We consider next the velocity distributions on the bubble surface, that is vs(θ) ≡ uθ(r =
1, θ). The retardation of the bubble by adsorption of surfactant onto the surface is due
to the Marangoni force which is set up by the surface gradients. The surface tension
(which is a decreasing function of surface concentration) is lower at the back end than
at the front, and the Marangoni force acts from regions of low to high surface tension
and so opposes the surface velocity in this case. This retardation is shown in the results
of figure 2. In figures 2(a) and 2(b), we plot the surface velocity, vs, as a function
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Figure 2. Surface velocity, for Re = 50, Ma = 5 and χ = 1, and k = βC∞/α is the measurement of
bulk concentration. (a, c) Pe = 100; (b, d) 200.

of θ, for the same values of Reynolds number Re, Marangoni number Ma and χ as
used in figure 1, and various bulk concentration values k (shown on the figures), for
two different Péclet numbers (Pe = 100 and 200). Both sets of computations show
that negative velocities are set up in the vicinity of the rear stagnation point for the
smaller values of bulk concentration k. Figures 2(c) and 2(d) depict a magnification of
figures 2(a) and 2(b) respectively, near the rear stagnation point. The first important
point to note from figure 2 is that for a fixed Péclet number, the surface velocity
increases with k and the velocity profile becomes more symmetric about θ = 1

2
π,

corresponding to the fact that the concentrations become more uniform, as shown
in figure 1. We also note that when k increases from a value of k = 5, the surface
velocity near the front stagnation point decreases at first. The reason for this is that
as the stagnant cap regime is approached, surfactant convects to the back end by the
strong convection after adsorption onto the surface at the front, with small amounts
of material left at the front making the surface concentration gradient there small. As
k increases, however, a larger surface concentration gradient develops near the front
end as the ratio χk/Pe becomes larger (but not large enough for remobilization).

Figures 2(c) and 2(d) show that for the smallest values of k there is a small reversed
flow at the back end. The extent of the reversed flow region at the rear as well as
the magnitudes of the reversed velocities, are seen to decrease as k increases. This is
the first evidence that a wake has formed at the back end of the bubble owing to the
retardation of the surface velocity. The fact that for larger values of k this reversed
flow disappears validates our claim, as described in § 1, that the appearance of the
wake can be controlled by the remobilization of the interface. We also note that this
negative velocity pushes surfactant on the surface away from the back stagnation
point and causes the small decrease in surface concentration observed in figure 1.
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Figure 3. The effect of concentration on the drag, for Re = 50, Ma = 5 and χ = 1, and k = βC∞/α
is the measurement of bulk concentration.

3.3. Total drag on the bubble

We consider next, the effect of varying the bulk concentration k on the drag coefficient
experienced by the bubble and given by the formula (2.20). We present results for
a fixed Reynolds number Re = 50 for two different Péclet numbers Pe = 100 and
200, the other parameters being fixed as before (Ma = 5, χ = 1). The value for the
Reynolds number is chosen so that wakes form behind the bubble for relatively low
values of k; the bulk concentration k ranges between 5 and 200. Results for the drag
coefficient versus k are given in figure 3. As a reference, the drag on a rigid sphere at
this Re is 0.55 (see Magnaudet et al. 1995) and for a clean spherical bubble it is 0.18
(see Ryskin & Leal 1984; Magnaudet et al. 1995). It can be seen that for a fixed Péclet
number the drag decreases as the bulk concentration k increases; this corresponds to
the increase of the interfacial mobility elucidated in figure 1. The range of k selected
is in the regime of remobilization and for smaller values of k the drag rises from
the clean bubble value. It is also evident from the results that higher Péclet numbers
require a higher value of k to attain a given value of CD as we have surmised from
the fact that χk/Pe must become large for remobilization. This is in full agreement
with our previous results concerning other flow quantities. We note that the range of
k used to produce figure 3 starts at k = 5 and as a result the drag coefficient is mostly
decreasing – we are at a value of k where remobilization is taking place already. At
lower values of k starting from k = 0, we observe a monotonic increase of CD (results
not shown). This has been observed in the creeping flow case also (see Wang et al.
1999).

3.4. Wake formation and control

As already discussed, when convection of surfactant on the bubble surface is larger
than the diffusion off the surface (i.e. χk/Pe < 1), surfactant accumulates at the back
and the interface becomes immobile there. This change in the surface boundary con-
dition affects the hydrodynamics globally, and wakes are found to form which would
be absent if surfactants were not present, assuming the bubble remains spherical.
In fact, we found from our computations that wakes form at order-one Reynolds
numbers. This is illustrated in the results of figure 4 which considers the effect of
increasing the Reynolds number, all other parameters held fixed. The figure shows the
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Figure 4. Flow around the bubble for Pe = 100, Ma = 5, χ = 1 and k = 5.

streamlines of the flow field (at steady state), for a range of Reynolds numbers – the
values of the other parameters in these results are: Péclet number, Pe = 100, k = 5
(i.e. relatively low bulk concentrations), Marangoni number Ma = 5 and χ = 1. For
these parameter values, wakes are found to form first at Reynolds numbers between
Re = 15 and Re = 20, which is larger than the corresponding value for a solid sphere
which is (Re ∼ 12.5); as expected the recirculation zone expands as the Reynolds
number increases.

Next, we consider the effect of bulk concentration on the flow, at Reynolds numbers
which are sufficiently high enough that wakes are formed at low values of k (as in
figure 4, for example). To illustrate this, a Reynolds number Re = 50 is chosen, the
Marangoni number is fixed at Ma = 5 and χ = 1. Two different sets of results are
presented, the first at Pe = 100 and the second at Pe = 200. The bulk concentration
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is varied by two orders of magnitude with k ranging between values of 5 and 200.
Figure 5 is for the run having Pe = 100 and figure 6 has Pe = 200. Streamline
plots are given at steady state as before, which easily enable the identification and
relative sizes of recirculating eddies. At the lowest value of k = 5 presented, the
flow in both figures begins with a relatively large wake whose length is of the order
of the bubble diameter. In both cases, an increase in k produces a decrease in the
size of the recirculating eddy which eventually disappears when k is big enough. For
Pe = 100, the wake disappears at a value of k between 25 and 30, whereas for the case
Pe = 200 this happens at value between 45 and 50. This heralds the remobilization
of the bubble by the increase in bulk concentration and the consequent uniformity in
surface concentration. It can be seen from figures 5 and 6 that, after remobilization,
the streamlines become more symmetric about θ = 1

2
π. We note also that, given the

same value of k, the wake has larger dimensions for the higher Péclet numbers. This
confirms the results and conclusions of the previous sections (see figures 1 and 2
and the discussion there), since higher Péclet numbers require higher values of k to
remobilize the surface.

4. Discussion and conclusions
The calculations presented here demonstrate that surfactants can control the for-

mation and size of wakes behind spherical bubbles moving at order-one Reynolds
numbers. The surfactant parameter which describes this control is the ratio of diffu-
sive exchange of surfactant between the bulk and the bubble surface to the surface
convection, i.e. χk/Pe. We have shown that for any order-one Péclet number, when
the ratio χk/Pe � 1 and convection outscales exchange, surfactant collects near the
rear stagnation point (θ = π) making the interface there immobile and allowing wakes
to form at order-one Reynolds numbers. The reverse flow near the surface pushes
surfactant away from the rear stagnation point towards the front stagnation point,
and causes a negative surface velocity near the back end. As k increases, although
the amount of surfactant adsorbed onto the surface increases, the surface concentra-
tion gradient decreases since the ratio χk/Pe increases. The reduction in the surface
concentration gradient decreases the Marangoni force and allows the interface to be-
come more mobile. In turn, wakes disappear as the interface near the rear stagnation
point becomes more mobile. At χk/Pe� 1, although the total amount of surfactant
adsorbed onto the surface is large, the surface concentration becomes uniform (we
say the bubble interface remobilizes), as shown in figure 1. In addition to the removal
of the wake, the increased mobility of the surface owing to the reduction in the
Marangoni force decreases the drag. The larger the Péclet number is the larger the
bulk concentration needed to remobilize the bubble interface, as shown in figure 3.
For fixed bulk surfactant concentration, the drag increases as the Péclet number
increases.

The ability to control the wake behind the bubble has important ramifications
in the efficiency of mass transfer operations where solute transfers between a rising
bubble and the continuous phase around the bubble. This problem has been of long-
standing interest, see for example Clift et al. (1978). In bubble mass transfer systems
although surfactants are not intentionally added, they are unavoidably present as
an impurity in the system. Because of their low concentration, they usually create
stagnant caps on the bubble surface which, as we have discussed, can give rise to
sizable wakes at the back end. Under the usual case of large Péclet number, the
mass transfer picture is as follows. At the front mobile part of the bubble a thin
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Figure 5. Flow around the bubble for Pe = 100, Ma = 5, χ = 1 and Re = 50.

solute boundary-layer thickness of order Pe−1/2 is set up implying a flux of order
Pe1/2. On immobile parts of the surface upstream from the wake, a thin but larger
boundary layer of order Pe−1/3 also exists. Most of the flux of solute out of the
bubble is through these two boundary layers. Finally, solute also diffuses across the
slowly recirculating wake. Since the size of this wake is of the order of the bubble
radius, the mass transfer is greatly reduced in this region. Thus, the overall effect of
the formation of the stagnant cap owing to the surfactant impurity is to significantly
reduce the mass transfer rate relative to the case of a clean mobile surface. (The
numerical calculations by Takemura & Yabe (1999, see their figure 9) show how
drastic this reduction in mass transfer can be.) In this study, we have shown that
surfactants which kinetically exchange rapidly between the surface and the liquid
sublayer adjacent to the surface, can at high concentration remove the wake by
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Figure 6. Flow around the bubble for Pe = 200, Ma = 5, χ = 1 and Re = 50.

increasing the surface mobility. Therefore, used in mass transfer operations, such
surfactants at high concentrations first prevent the impurity from adsorbing and
forming a stagnant cap. Secondly, they maintain a high surface mobility along the
entire bubble surface which results in an order Pe−1/2 solute boundary layer and
enhanced mass transfer. We note that the reduction in the solutal boundary-layer
thickness will increase the mass transfer even at low Reynolds numbers where wakes
are not present.

As a particular physical example, consider the buoyancy-driven motion of a bubble
in an aqueous continuous phase. To select a surfactant to remobilize, note the fol-
lowing. Kinetic rate constants are determined by measuring the relaxation in tension
as surfactant exchanges between the surface and the bulk. The kinetic constants of
only a few systems have been studied (see the review article Chang & Franses 1995);
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among them, the medium chain length alcohols have been shown to have relatively
large desorption rate constants. The kinetic desorption constant has been measured
by Joos & Serrien (1989), for the three to seven chain length alcohols, and found α
to be relatively constant and equal to 102 s−1. For the common polyethylene oxide
surfactants (CiEj(CH3(CH2)i−1(OCH2CH2)j − OH)), measurements by Lin and col-
leagues (Chang, Hsu & Lin 1998; Lin et al. 1996) have shown that the desorption
constants are of the order of 10−3 s−1 for C10E8 and 10−4 s−1 for C12E8. We note in
fitting the dynamic relaxation data for the polyethoxylates, Lin et al. used a Frumkin
equation in which the desorption rate had an additional factor of exp (K(Γ/Γ∞)),
where K = 9.6 for the 10 chain and 5.2 for the 12 chain. The effective desorption
rate constant at the high coverage conditions of remobilization is therefore α exp (K),
and hence the effective desorption rate constant is of the order of 14 s−1 for the
10 chain, and 0.05 s−1 for the 12 chain. Thus, from the point of view of satisfying
the kinetic constraint, the medium chain alcohols are better candidates than the
polyethoxylates. On the other hand, the diffusion limitation requires large bulk con-
centrations, and this condition favours the polyethoxylates for the following reason.
In aqueous solution medium chain length alcohols become insoluble at a limiting
concentration, forming a micrometre sized dispersed phase above this concentration.
Ethoxylates form aggregates consisting of tens to hundreds of monomers (micelles)
at a critical concentration (the CMC); unlike the dispersed insoluble phase of the
alcohol, micelles can break down and reform rapidly relative to convective scales.
This exchange enhances the transport of surfactant between the surface and the
bulk, facilitating remobilization as the concentration of micelles increases. As mi-
celle concentrations can reach high levels before other (slower exchanging) structures
form in the phase diagram of the polyethoxylate, micellization can be effective in
enabling remobilization for a surfactant whose monomer concentration is not high
enough at the CMC to remobilize the interface. However, as the theory detailed
in this paper is for concentrations below the CMC, we will restrict our attention
to submicellar solutions for polyethoxylates. In table 1, we calculate the transport
ratios in an aqueous system for different bubble radii for two surfactants, an alcohol,
hexanol and the polyethoxylate with the higher rate constant, C10E8. The insolubil-
ity limit for hexanol is 5 × 10−5 mole cm−3, and hence we compute the maximum
diffusion/convection transport ratio in the table at this upper limit. The maximum
packing concentration, the diffusion coefficient, the equilibrium ratio α/β and the
desorption rate constant for hexanol as measured in Joos & Serrien (1989), are
Γ∞ = 6 × 10−10 mol cm−2, D = 5.2 × 10−6 cm2 s−1, α/β = 3.7 × 10−6 mol cm−3 and
α = 98 s−1, respectively. The CMC for C10E8 (see Lin et al.) is 1 × 10−6 mol cm−3,
and this value is used to compute the maximum diffusion/convection ratio for the
polyethoxylate. For C10E8 (as measured by Lin et al.) the transport values are:
Γ∞ = 3.1 × 10−10 mol cm−2, D = 6.5 × 10−6 cm2 s−1, α/β = 1.3 × 10−10 mol cm−3 and
α = 9.7 × 10−4 s−1. Finally, the characteristic clean bubble velocities (Uclean) for the
particular bubble radii shown are obtained using the Hadamard–Rybczynski formula
(Uclean = ρga2/3µ) for low Reynolds number (Re = ρUcleana/µ) and a correlation for
higher Re, CD = (8/Re)(1 + 0.15(2Re)1/2) where CD is the drag coefficient (defined as
CD = Fz/(

1
2
πa2U2

clean)) and the correlation is obtained from the numerical simulations
in Magnaudet et al. (1995).

To have complete remobilization, i.e. a return to an unretarded interface, the
parameters Bi and χk/Pe1/2 (or χk/Pe, depending on the Péclet number) must be
large. The smaller these transport ratios are, the less is the remobilization. In terms of
the diffusion limitation, figure 3 for infinite kinetics indicates that when χk/Pe (we use
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C10E8 Hexanol C10E8 Hexanol C10E8 Hexanol

4× 102 19 75 1.1× 105 1.4× 105 0.03 0.21 0.35 10
102 2.5 2.5 3.8× 103 4.7× 103 0.06 0.41 0.52 12
10 3.3× 10−2 3.3× 10−3 4.6 5.8 0.48 3.3 0.57 14
1 3.3× 10−4 3.3× 10−6 4.6× 10−3 5.8× 10−3 48 33 80 1.4× 103

Table 1.
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the order one in Pe formulation since Péclet numbers in the figure are only of order
100) is equal to approximately 0.3–0.4, the drag is halfway between clean and rigid
values, whereas for χk/Pe between 2 and 3 the interface is essentially remobilized. To
estimate how large a Biot number is necessary for remobilization, we note that Chen
& Stebe (1996) calculated the terminal velocities of surfactant-laden bubbles for the
case in which the transport is only kinetically controlled. They found that for Bi = 1,
the terminal velocity is halfway between that of a rigid sphere and a clean bubble,
whereas for Bi = 10, the interface is essentially remobilized. With these numbers
as a guide, it is clear from the table that hexanol will completely remobilize the
1 µm bubbles, and partially remobilize (owing primarily to the kinetic constraint) the
10–400 µm sized bubbles. Most importantly, the wake-controlling mechanism should
be realized for bubbles in the size range of 100–400µm where Reynolds numbers
come into the range where wakes can form. The polyethoxylate is only partially
remobilizing in the size range of 1–10 µm, and is ineffective at remobilization for the
larger bubbles owing to the small Biot numbers (the values of the diffusion parameter
would yield partial remobilization in the absence of the kinetic limitation).

The conclusion evident from the table that reduced values of the Biot number
represents the primary restriction to remobilization, suggests other hydrodynamic
conditions for which these surfactants may be effective at remobilization. If the bub-
ble were a drop with a density close to that of water, then velocities at the same
bubble radii would be significantly reduced, and under these conditions the Biot
number would be increased (with an increase in the diffusion transport parame-
ter also) and remobilization could be achieved. In addition, if the viscosity of the
continuous phase around the bubble were increased from the value of water, the
reduced velocity would also increase the Biot number and remobilization should
be achieved. In this case, the diffusion transport ratio would not change apprecia-
bly from the water values because the reduction in velocity would be compensated
by a reduction in the diffusion coefficient of the surfactant in the more viscous
continuous phase. Finally, in microgravity conditions, where thermocapillary forces
drive the bubble motion, velocities for similarly sized bubbles are much smaller,
and hence this type of flow would represent ideal conditions for remobilization.
We should note, however, that while reduced velocities will promote conditions for
remobilization, the attendant decrease in the Reynolds number may lead to cir-
cumstances where wakes are not encountered. One additional point on realizing
remobilization in realistic systems is that such systems invariably have impurities
which, by themselves, would retard the interface since they are at low concentrations.
However, the remobilizing surfactant, because it is present at high concentrations,
would not allow the impurities to adsorb when the bubble is created since its
adsorption rate would be orders of magnitude larger than the impurity. Thus, re-
mobilization in realistic systems is a two-part mechanism; it protects the interface
from retarding impurities as it maintains mobile conditions. In the simulations of
this study, Péclet numbers equal to 100 and 200 were used. Although these values
are realistic for bubbles with the smaller radii in the table, the associated Reynolds
numbers as shown in the table are too low for wake formation. To simulate and
illustrate the wake control, the Reynolds number was increased to a value of 50;
however, realistic simulations should then take higher values for the Péclet num-
ber (since Schmidt numbers in liquids (the product of Pe and Re) are of order
103). As these higher values entail special consideration of the diffusion boundary
layer for the resolution of the mass transfer, they will be considered in a separate
study.
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